This paper presents recent results on CMOS integrated circuits for automotive radar sensor applications in the 77 GHz frequency band. It is well demonstrated that nano-scale CMOS technologies are the best solution for the implementation of low-cost and high-performance mm-wave radar sensors since they provide high integration level besides supporting high-speed digital processing. The present work is mainly focused on the RF front-end and summarizes the most stringent requirements of both short/medium- and long-range radar applications. After a brief introduction of the adopted technology, the paper addresses the critical building blocks of the receiver and transmitter chain while discussing crucial design aspects to meet the final performance. Specifically, effective circuit topologies are presented, which concern mixer, variable-gain amplifier, and filter for the receiver, as well as frequency doubler and power amplifier for the transmitter. Moreover, a voltage-controlled oscillator for a PLL efficiently covering the two radar bands is described. Finally, the circuit description is accompanied by experimental results of an integrated implementation in a 28 nm fully depleted silicon-on-insulator CMOS technology.
Read full abstract