Abstract

This article presents Switched-Capacitor assisted Power Gating (SwCap PG) for reducing the leakage currents of large digital circuits. For the first time, PG switch is biased in the super turn-off and the super turn-on mode during the off-state and the on-state, respectively. A simple switched-capacitor network reconfigures and biases the PG switch in four different possible states with low area and power overhead. During the super turn-off, voltage stress is avoided in the PG switch when the circuit load uses supply voltage equal to the nominal $\text{V}_{\mathbf {DD}}$ in a given technology, and maximum possible leakage current reduction is achieved by the optimal biasing of the gate voltage. The proposed SwCap PG is experimentally validated in the 180nm CMOS technology. Measurement results of CMOS SwCap PG show that leakage current and $\text{R}_{\mathbf {ON}}$ reduce by 186- $226\times $ and 18% respectively, as compared to the conventional PG. An alternate solution for SwCap network using MEMS devices as the switching elements is implemented for additional benefits. Measurement results of MEMS SwCap PG show that leakage current and $\text{R}_{\mathbf {ON}}$ reduce by $172\times $ and 26% respectively, compared to the conventional PG. Finally, the applicability of the SwCap PG in the nano-scale CMOS technologies is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.