In this paper, accurate temperature-dependent static model for Silicon-Carbide (SiC) power MOSFET is presented. The proposed model is formed by two equations relating to linear and saturation operating regions. In this model, new formalism of the saturation drain current is introduced to consider the peculiar features observed in the I-V static characteristics of the SiC power MOSFET: a) moderate inversion region, or region of low gate voltages and b) quasi-saturation region, region of high gate voltages at which the drain current becomes less sensitive to the increase of gate voltage. In addition, the model captures with high-precision the transition region between linear and saturation region, pinch-off region, noticed in the output characteristics of the SiC power MOSFETs. It will be shown that the model equations ensure continuity and smooth transition between all operating regions. Temperature scaling of the model is carried out by its temperature scaling parameters. The proposed compact model is simple and efficient using reduced number of technology independent parameters. Simple parameter extraction procedure is described that uses an optimizer algorithm based on good experimental initial guess. Excellent agreement is obtained by comparing model to TCAD simulation and device measurement.
Read full abstract