The oxygen plasma surface treatment prior to ohmic metal deposition was developed to reduce the ohmic contact resistance (RC) for AlGaN/GaN high electron mobility transistors (HEMTs) on a high-resistive Si substrate. The oxygen plasma, which was produced by an inductively coupled plasma (ICP) etching system, has been optimized by varying the combination of radio frequency (RF) and ICP power. By using the transmission line method (TLM) measurement, an ohmic contact resistance of 0.34 Ω∙mm and a specific contact resistivity (ρC) of 3.29 × 10–6 Ω∙cm2 was obtained with the optimized oxygen plasma conditions (ICP power of 250 W, RF power of 75 W, 0.8 Pa, O2 flow of 30 cm3/min, 5 min), which was about 74% lower than that of the reference sample. Atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and photoluminescence (PL) measurements revealed that a large nitrogen vacancy, which was induced near the surface by the oxygen plasma treatment, was the primary factor in the formation of low ohmic contact. Finally, this plasma treatment has been integrated into the HEMTs process, with a maximum drain saturation current of 0.77 A/mm obtained using gate bias at 2 V on AlGaN/GaN HEMTs. Oxygen plasma treatment is a simple and efficient approach, without the requirement of an additional mask or etch process, and shows promise to improve the Direct Current (DC) and RF performance for AlGaN/GaN HEMTs.
Read full abstract