Abstract

We used cross sectional high resolution transmission electron microscopy (HRTEM) to observe DC plasma oxidized Al/sub 2/O/sub 3/ barriers directly. We measured average, minimum, and maximum thicknesses for a variety of barriers. We studied the effects of plasma oxidation time, precursor Al thickness, and oxygen plasma conditions on barrier thickness and thickness spread. The barrier thickness spread is important in the transport behavior of these junctions because of the exponential dependence of tunneling current on barrier thickness. The thickness spread initially increases with time and then appears to remain constant. The relative spread initially remains constant with increasing thickness. The precursor Al thickness does not affect the barrier thickness distribution significantly, although there may be some oxidation of the bottom electrode for thin (/spl ap/10 /spl Aring/) precursors. As expected, the barrier oxidation rate and final barrier thickness can be reduced significantly (/spl ap/30%) by changing the plasma parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.