The design of a water distribution network (WDN) is an optimization problem that is computationally challenging with conflicting objectives. This study offers an enhanced Chaotic Sobol Sequence-based Multi-Objective Self-Adaptive Differential Evolution (CS-MOSADE) algorithm for multi-objective WDN design. The CS-MOSADE algorithm was tested on two benchmark WDNs, and a real WDN. Optimization results indicate that the CS-MOSADE algorithm converged two to three times faster than the MOSADE and NSGA-IIalgorithms and led to better output in terms of even distribution of solutions and convergence towards the true Pareto-optimal front. Smaller spacing metric indicated better uniformity in the obtained solutions; and larger hyper-area and coverage function values depicted better convergence towards the true Pareto-optimal front for the CS-MOSADE algorithm compared to the other algorithms. The CS-MOSADE algorithm was then applied to solve a WDN expansion problem for optimal pump scheduling and minimization of Life Cycle Cost, maximization of reliability and minimization of Green House Gas (GHG) emissions. A significant reduction in GHG emissions of 2.17 x 106 kg was achieved at an additional cost of $0.55 x 107 when optimal pump scheduling was incorporated in the model of the real WDN over service life of 50 years.
Read full abstract