Abstract

The design of a water distribution network (WDN) is an optimization problem that is computationally challenging with conflicting objectives. This study offers an enhanced Chaotic Sobol Sequence-based Multi-Objective Self-Adaptive Differential Evolution (CS-MOSADE) algorithm for multi-objective WDN design. The CS-MOSADE algorithm was tested on two benchmark WDNs, and a real WDN. Optimization results indicate that the CS-MOSADE algorithm converged two to three times faster than the MOSADE and NSGA-IIalgorithms and led to better output in terms of even distribution of solutions and convergence towards the true Pareto-optimal front. Smaller spacing metric indicated better uniformity in the obtained solutions; and larger hyper-area and coverage function values depicted better convergence towards the true Pareto-optimal front for the CS-MOSADE algorithm compared to the other algorithms. The CS-MOSADE algorithm was then applied to solve a WDN expansion problem for optimal pump scheduling and minimization of Life Cycle Cost, maximization of reliability and minimization of Green House Gas (GHG) emissions. A significant reduction in GHG emissions of 2.17 x 106 kg was achieved at an additional cost of $0.55 x 107 when optimal pump scheduling was incorporated in the model of the real WDN over service life of 50 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.