Abstract
In this paper, the unrelated parallel batch processing machine (UPBPM) scheduling problem is addressed to minimize the total energy consumption (TEC) and makespan. Firstly, a mixed-integer line programming model (MILP) of the UPBPM scheduling problem is presented. Secondly, a self-adaptive multiobjective differential evolution (AMODE) algorithm is put forward. Since the parameter value can affect the performance of the algorithm greatly, an adaptive parameter control method is proposed according to the convergence index of the individual and the evolution degree of the population to improve the exploitation and exploration ability of the algorithm. Meanwhile, an adaptive mutation strategy is proposed to improve the algorithm’s convergence and the solutions’ diversity. Finally, to verify the effectiveness of the algorithm, comparative experiments are carried out on 20 instances with 5 different scales. Numerical comparisons indicate that the proposed method can achieve high comprehensive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.