Abstract

AbstractA number of multiobjective evolutionary algorithms (MOEAs) have been developed and applied to water resource optimization problems over the past decade. The comparative performance of these MOEAs has been investigated often according to their overall end-of-run results (quality of optimal fronts) within prespecified computational budgets. Despite the importance of such comparative analyses, these studies have provided little knowledge of how different MOEAs navigate through the decision space toward the Pareto front. To address this issue, this paper uses a range of metrics to quantitively characterize MOEAs’ run-time searching behavior, with a focus on the statistics of search quality and convergence progress. The metrics are applied to three state-of-the-art MOEAs, including the nondominated sorting genetic algorithm-II (NSGA-II), self-adaptive multiobjective differential evolution (SAMODE), and Borg, for six water distribution system (WDS) design problems with the objectives of minimizing netwo...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.