Abstract

An automated three-dimensional multi-objective optimization and data mining method is presented by integrating a self-adaptive multi-objective differential evolution algorithm (SMODE), 3D parameterization method for blade profile and meridional channel, Reynolds-averaged Navier–Stokes (RANS) solver technique and data mining technique of self-organizing map (SOM). Using this method, redesign of a high pressure ratio centrifugal impeller is conducted. After optimization, 16 optimal Pareto solutions are obtained. Detailed aerodynamic analysis indicates that the aerodynamic performance of the optimal Pareto solutions is greatly improved. By SOM-based data mining on optimized solutions, the interactions among objective functions and significant design variables are analyzed. The mechanism behind parameter interactions is also analyzed by comparing the data mining results with the performance of typical designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.