Abstract

The design of high pressure ratio impellers is a challenging task. SRV2-O, a typical high pressure ratio centrifugal impeller is selected for the research. A good understanding of flow characteristics in the passage of SRV2-O is obtained by using 3D Reynolds-Averaged Navier-Stokes (RANS) solutions upon numerical validation. It confirms that tip leakage flow and shock wave boundary layer interactions produce the primary energy loss in this transonic impeller. A 3D multi-objective aerodynamic optimization and data mining method named BMOE is presented and programmed by integrating a self-adaptive multi-objective differential evolution algorithm SMODE, 3D blade parameterization method based on non-uniformed B-Spline, RANS solver technique and self-organization map (SOM) based data mining technique. Using BMOE, multi-objective aerodynamic design optimization and data mining is performed for SRV2-O. 14 Pareto solutions are obtained for maximizing isentropic efficiency and total pressure ratio of the impeller. Three typical Pareto solutions, Design A with the highest efficiency, Design B with the higher efficiency and larger pressure ratio and Design C with the maximum pressure ratio, are analyzed. Detailed analysis indicates that the aerodynamic performance of optimized designs is greatly improved. Furthermore, by SOM-based data mining on optimization results, trade-off relation between objective functions and parameter influence mechanism on impeller aerodynamic performance are visualized and explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call