This paper reports the complementary resistive switching (CRS) characteristics exhibited by Au/ZnO/Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> /Fluorine doped tin oxide (FTO) bilayer device for the first time, where both ZnO and Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> are active switching layers exhibiting resistive switching properties. The I-V characteristics of the device initially show bipolar resistive switching (BRS) for a few cycles (∼12) before permanently switching to CRS with the extension of SET voltage. The stable CRS state of the device exhibits a high current of ∼500 μA during the ON-state and low current of 3x10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-7</sup> A during OFF-state at low input voltages (-0.5 V to 0.5V) enables the proposed device suitable to use in crossbar array to mitigate the sneak path current. The device performance to write and read processes is evaluated with pulses of magnitudes ∼|2.5| V and 1.3 V, respectively, and showed a ∼ 60μA difference in read-out current between data bits 0 and 1. Similarly, the device's power consumption is also measured to elucidate that the device is suitable to use as a memory unit with power consumption in the order of microwatts (μW). Further, the possible switching mechanism is demonstrated based on oxygen vacancies migration.
Read full abstract