Many Pseudoalteromonas strains can produce bioactive compounds with antimicrobial activities. This study focused on a probiotic candidate P.flavipulchra CDM8 to reveal its novel antibacterial mechanism and risks for antibiotic resistance dissemination. Strain CDM8 could form floating biofilm, displayed strikingly broad antibacterial activities against multiple Vibrio and Bacillus species, and decreased the competitor’s concentration in their co-cultures in the microtiter plate tests. It could also form vesicle/pilus-like structures on the outer surface, which were indicated to participate in the bactericidal activity and represent a novel antibacterial mechanism of CDM8, according to the scanning electron microscopic observation. However, CDM8 displayed multi-antibiotic resistance, conferred by the multidrug resistance regions in hotspot 4 and variable region III of a novel SXT/R391-like integrative and conjugative element (ICEPflCDM8). Summing up, our results provided a better understanding of the bactericidal mechanism of P. flavipulchra and highlighted the role of SXT/R391-like ICEs in conferring multidrug resistance phenotype of probiotic P. flavipulchra candidates.
Read full abstract