Objects of critical infrastructure of Ukraine need a multi-level anti-missile defense system, which should protect against various types of missiles with a flight range of several tens to several hundreds of kilometers. Timely detection of missiles allows for a number of measures aimed at interception and destruction of targets, the use of radio-electronic warfare, the installation of interfering and obstructing obstacles in various ranges of radio waves, as well as the inclusion of optical and thermal traps. The use of robotic complexes placed on aerostats increases the effectiveness of modern surface-to-air missile system (SAMS) many times over in the fight against low-flying targets with massed strikes of cruise missiles. The location of radar at an altitude of several kilometers ensures the detection range of low-flying targets several times greater than that of ground-based radar. This is of particular importance for SAMS when firing at targets beyond the radio horizon. The transfer of data about the location of the target from the radar of the air carrier to the air defense system and its illumination and guidance radar (at least the approximate location) provides the opportunity to bring the anti-missile to the point of inclusion of its homing head. It is proposed to modernize the radar with an active phased antenna array used on fighters to increase the range and installation on airships and balloons. This will ensure the effectiveness of defense against missile attacks, detection and tracking of up to 100 targets at distances of about 40...400 km. At the same time, the weight of the radar within the range of 200...500 kg and the dimensions of the antennas up to 1 meter are permissible for installation on large balloons. Countries for which attacks of various types of missiles are a real threat need a multi-level anti-missile system, in particular, using robotic complexes placed on air carriers. Keywords: anti-missile defense, radar station, balloon, airship.
Read full abstract