Abstract

This paper presents the estimation method for uncertain parameters in flight vehicles, especially missile systems, based on physics-informed neural networks (PINNs) augmented with a novel integration-based loss. The proposed method identifies four types of structured uncertainty: burnout time, rocket motor tilt angle, location of the center of pressure, and control fin bias, which significantly affect the missile performance. In the estimation framework, as neural networks (NNs) are updated, these uncertainties are also identified simultaneously because they are also included in the structure of NNs. After testing 100 simulation data, the average estimation errors are within 1% of the mean value for each type of uncertainty. The methodology is able to identify the parameters despite noise corruption in the time-series data. Compared with the conventional PINNs, adding the new loss based on the integration of differential equations yields a more reliable estimation performance for all types of uncertainty. This approach can be effective for complex systems and ill-posed inverse problems, which makes it applicable to other aerospace systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.