Abstract

AbstractIn this paper, a super-twisting disturbance observer (STDO)-based adaptive reinforcement learning control scheme is proposed for the straight air compound missile system with aerodynamic uncertainties and unmodeled dynamics. Firstly, neural network (NN)-based adaptive reinforcement learning control scheme with actor-critic design is investigated to deal with the tracking problems for the straight gas compound system. The actor NN and the critic NN are utilised to cope with the unmodeled dynamics and approximate the cost function that are related to control input and tracking error, respectively. In other words, the actor NN is used to perform the tracking control behaviours, and the critic NN aims to evaluate the tracking performance and give feedback to actor NN. Moreover, with the aid of the STDO disturbance observer, the problem of the control signal fluctuation caused by the mismatched disturbance can be solved well. Based on the proposed adaptive law and the Lyapunov direct method, the eventually consistent boundedness of the straight gas compound system is proved. Finally, numerical simulations are carried out to demonstrate the feasibility and superiority of the proposed reinforcement learning-based STDO control algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.