As a designated national low-carbon pilot city, Nanjing faces the challenge of reducing energy consumption and carbon emissions while experiencing rapid economic growth. This study developed a localized Long-range Energy Alternatives Planning System (LEAP) model specifically for Nanjing and constructed four different development scenarios. By utilizing the Log Mean Divisia Index (LMDI) decomposition, the Tapio decoupling elasticity coefficient, and comparing the emission reduction effects of individual measures and their cross-elasticity of carbon reduction, this study investigated the key factors and their carbon reduction path characteristics in Nanjing toward its carbon peak target by 2030. The results indicate that: (i) Nanjing could reach its peak carbon target of about 3.48 million tons by 2025 if carbon reduction measures are strengthened; (ii) The main elements influencing Nanjing’s carbon peak include controlling industrial energy consumption, restructuring the industry, promoting the construction of a new power system, and developing green transportation; (iii) Controlling industrial energy consumption and changing industrial structure have a greater impact on reducing carbon emissions than other measures, and both have a synergistic effect. Therefore, Nanjing should prioritize these two strategies as the most effective methods to reduce carbon emissions. Additionally, to slow down the growth of urban carbon emissions, policies aimed at reducing the energy intensity and carbon intensity of energy consumption should be formulated. For instance, the integration and innovation of green industries within the city region, such as new energy vehicles, new energy materials, and big data, should be accelerated, and the proportion of clean energy consumption in urban areas should be increased. The LEAP (Nanjing) model has successfully explored Nanjing’s low-carbon pathway and provided policy guidance for the optimal transformation of industrial cities and early carbon peaking.
Read full abstract