Electrochemical enzyme-linked immunosorbent assay (ELISA)-based immunoassays for cancer biomarker detection have recently attracted much interest owing to their higher sensitivity, amplification of signal, ease of handling, potential for automation and combination with miniaturized analytical systems, low cost and comparative simplicity for mass production. Their developments have considerably improved the sensitivity required for detection of low concentrations of cancer biomarkers present in bodily fluids in the early stages of the disease. Recently, various attempts have been made in their development and several methods and processes have been described for their development, amplification strategies and testing. The present review mainly focuses on the development of ELISA-based electrochemical immunosensors that may be utilized for cancer diagnosis, prognosis and therapy monitoring. Various fabrication methods and signal enhancement strategies utilized during the last few years for the development of ELISA-based electrochemical immunosensors are described.
Read full abstract