The distribution grid comprises cables with diverse constructions. The insulating material used in low-voltage (LV) distribution cables is predominantly PVC. Furthermore, the presence of cables with different structures in the grid poses challenges in detecting the aging of the cable network. Finding a universal and dependable condition-monitoring technique that can be applied to various types of cables is indeed a challenge. The diverse construction and materials used in different cables make it difficult to identify a single monitoring approach that can effectively assess the condition of all cables. To address this issue, this study aims to compare the thermal aging behavior of different LV distribution cables with various structures, i.e., one cable contains a PVC belting layer, while the other contains filler material. The growing adoption of distributed generation sources, electric vehicles, and new consumer appliances in low-voltage distribution grids can lead to short, repetitive overloads on the low-voltage cable network. Hence, these cable samples were exposed to short-term cyclic accelerated aging in the climate chamber at 110 °C. The cable’s overall behavior under thermal stress was evaluated through frequency and time domain electrical measurements (including tan δ and extended voltage response) and a mechanical measurement (Shore D). The tan δ was measured in the frequency range of 20 Hz–500 kHz by using the Wayne-Kerr impedance analyzer. The extended voltage response measurement was conducted using a C# application developed in-house specifically for laboratory measurements in the .NET environment. The study observed a strong correlation between the different measurement methods used, indicating that electrical methods have the potential to be adopted as a non-destructive condition-monitoring technique.