A novel method for biasing phototransistor-based radiation detectors on high-resistivity Si is presented, that relies on the integration into the detector base of a pnp transistor acting as a current source. The proposed approach can be extended in a natural way to the biasing of npn detector arrays, allowing different detectors to be biased at the same quiescent current, by connecting all the biasing pnp transistors with a diode-connected reference transistor (integrated onto the same chip), so that they form a current-mirror circuit. Relying on two-dimensional numerical device simulations, several test structures have been designed and fabricated, including single BJT detectors and detector arrays with pnp biasing transistors connected in the current-mirror configuration. The electrical characterization of fabricated structures shows that both single detectors and detector arrays are operational and behave in good agreement with simulations, thus demonstrating the feasibility of the proposed approach.
Read full abstract