The key to intelligent traffic control and guidance lies in accurate prediction of traffic flow. Since traffic flow data is nonlinear, complex, and dynamic, in order to overcome these issues, graph neural network techniques are employed to address these challenges. For this reason, we propose a deep-learning architecture called AMGC-AT and apply it to a real passenger flow dataset of the Hangzhou metro for evaluation. Based on a priori knowledge, we set up multi-view graphs to express the static feature similarity of each station in the metro network, such as geographic location and zone function, which are then input to the multi-graph neural network with the goal of extracting and aggregating features in order to realize the complex spatial dependence of each station’s passenger flow. Furthermore, based on periodic features of historical traffic flows, we categorize the flow data into three time patterns. Specifically, we propose two different self-attention mechanisms to fuse high-order spatiotemporal features of traffic flow. The final step is to integrate the two modules and obtain the output results using a gated convolution and a fully connected neural network. The experimental results show that the proposed model has better performance than eight other baseline models at 10 min, 15 min and 30 min time intervals.
Read full abstract