The proper patterning of somites to give rise to sclerotome, dermomyotome, and myotome involves the coordination of many different cellular processes, including lineage specification, cell proliferation, cell death, and differentiation, by intercellular signals. One such family of secreted signaling proteins known to influence somite patterning is the Wnt family. Although the participation of Wnt-3a in the patterning of dorsal structures in the somite is well established, no clear consensus has emerged about the cellular processes that are governed by Wnt-3a in the somite. The recent demonstration that Wnt-3a has a proliferative role in the neural tube [Development 129 (2002) 2087] suggested that Wnt-3a might also act to regulate proliferation in somites. To test this hypothesis, we first analyzed the effects of Wnt-3a on segmental plate and somite explants (from Hamburger and Hamilton stage 10 chick embryos) grown in culture. These studies indicate that Wnt-3a is capable of maintaining and/or inducing expression of both Pax-3 and Pax-7, transcription factors that have been implicated in proliferation. To directly test for a role in proliferation, explants were immunostained with antibodies against phospho-histone H3. Explants treated with Wnt-3a show an increase in the percentage of cells expressing phospho-histone H3 as compared to controls. To test the proliferative effect of Wnt-3a in vivo, we ectopically expressed Wnt-3a in chick neural tubes via electroporation. Consistent with previous studies, ectopic expression of Wnt-3a in vivo results in a mediolateral expansion of the dermomyotome and myotome. We now show that proliferation of dorsal/dermomyotomal cells is significantly enhanced by ectopic Wnt-3a. Collectively, our explant and in vivo studies indicate that an increase in proliferation plays an important role in the expansion of the dermomyotome and myotome in Wnt-3a-treated embryos. Furthermore, our results demonstrate that small changes in proliferation can dramatically influence patterning and morphogenesis.
Read full abstract