Abstract
The paraxial mesoderm of the somites of the vertebrate embryo contains the precursors of the axial skeleton, skeletal muscles and dermis. The Meox1 and Meox2 homeobox genes are expressed in the somites and their derivatives during embryogenesis. Mice homozygous for a null mutation in Meox1 display relatively mild defects in sclerotome derived vertebral and rib bones, whereas absence of Meox2 function leads to defective differentiation and morphogenesis of the limb muscles. By contrast, mice carrying null mutations for both Meox genes display a dramatic and wide-ranging synthetic phenotype associated with extremely disrupted somite morphogenesis, patterning and differentiation. Mutant animals lack an axial skeleton and skeletal muscles are severely deficient. Our results demonstrate that Meox1 and Meox2 genes function together and upstream of several genetic hierarchies that are required for the development of somites. In particular, our studies place Meox gene function upstream of Pax genes in the regulation of chondrogenic and myogenic differentiation of paraxial mesoderm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.