Abstract
Tbx6 is a member of the T-box family of transcription factor genes. Two mutant alleles of this gene establish that Tbx6 is involved in both the specification and patterning of the somites along the entire length of the embryo. The null allele, Tbx6 tm1Pa , causes abnormal patterning of the cervical somites and improper specification of more posterior paraxial mesoderm, such that it forms ectopic neural tubes. In this study, we use this allele to further investigate the mechanism of action of the Tbx6 gene and investigate possible genetic interactions. We have tested the developmental and differentiation potential of Tbx6 tm1Pa / Tbx6 tm1Pa cells in ectopic sites, in vitro, and in chimeras in vivo. We have also documented cell proliferation and cell death in mutant tail buds in an attempt to explain the mechanism of tail bud enlargement in the Tbx6 mutant embryos. Our results indicate specific developmental restrictions on the differentiation of posterior cells lacking Tbx6, once they have traversed the primitive streak, but no restrictions in differentiation of anterior somites, or of Tbx6 null embryonic stem (ES) cells. We further demonstrate that Tbx6 null ES cells fail to populate posterior somites in chimeric embryos. To discover whether different T-box proteins interact on the same down stream targets in areas of expression overlap, we have explored potential interactions between Tbx6 and T ( Brachyury) in genetic crosses. Our results reveal that the T Wis mutation is epistatic to the Tbx6 tm1Pa mutation and that there is no apparent genetic interaction. However, homozygosity for Tbx6 tm1Pa and heterozygosity for T Wis mutation shows a combinatorial interaction at the phenotypic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.