Abstract
Genetic studies in the mouse have implicated ephrin-B2 (encoded by the gene Efnb2) in blood vessel formation, cardiac development and remodeling of the lymphatic vasculature. Here we report that loss of ephrin-B2 leads to defects in populations of cranial and trunk neural crest cells (NCC) and to defective somite development. In addition, we show that Efnb1/Efnb2 double heterozygous embryos exhibit phenotypes in a number of NCC derivatives. Expression of one copy of a mutant version of Efnb2 that lacks tyrosine phosphorylation sites was sufficient to rescue the embryonic phenotypes associated with loss of Efnb2. Our results uncover an important role for ephrin-B2 in NCC and somites during embryogenesis and suggest that ephrin-B2 exerts many of its embryonic function via activation of forward signaling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have