Abstract
Cells in the early vertebrate somite receive cues from surrounding tissues, which are important for their specification. A number of signalling pathways involved in somite patterning have been described extensively. By contrast, the interactions between cells from different regions within the somite are less well characterised. Here, we demonstrate that myotomally derived FGFs act through the MAPK signal transduction cascade and in particular, ERK1/2 to activate scleraxis expression in a population of mesenchymal progenitor cells in the dorsal sclerotome. We show that the levels of active, phosphorylated ERK protein in the developing somite are crucial for the expression of scleraxis and Mkp3. MKP3 is a dual specificity phosphatase and a specific antagonist of ERK MAP kinases and we demonstrate that in somites Mkp3 transcription depends on the presence of active ERK. Therefore, MKP3 and ERK MAP kinase constitute a negative feedback loop activated by FGF in sclerotomal progenitor cells. We propose that tight control of ERK signalling strength by MKP3 is important for the appropriate regulation of downstream cellular responses including the activation of scleraxis. We show that increased or decreased levels of phosphorylated ERK result in the loss of scleraxis transcripts and the loss of distal rib development, highlighting the importance of the MKP3-ERK-MAP kinase mediated feedback loop for cell specification and differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.