Due to the lack of any specific study about the sidewalls and other blocks’ changes in the case of hydraulic and scour downstream, the present study was conducted to investigate this issue. For this purpose, drainage projects and spillway chutes, as well as many baffle block chutes, were designed and constructed with the parallel sidewalls and trapezoidal shape using the U.S. Bureau of Reclamation (USBR) instructions. Three divergence ratios of ((b1/b2) = 1.45, 1.75, and 2.45), a parallel sidewall of (b1/b2 = 1), and also three geometry blocks including trapezoidal USBR, trihedral, and semicircle blocks were applied and tested in the hydraulic laboratory using a baffle chute with the slope of (2 : 1), (H : V). The material used in this study was sediment sand with a uniform grain size of d50 = 1.2 mm, 15 cm of thickness, and 2 m of length. The experiment was conducted with seven different discharges in lasting condition, and the flow characteristic and scour hole dimensions were measured. The results revealed that in comparison with the USBR blocks, changes in the baffle sidewall and block shape made an approximate 50% reduction in the maximum depth of the scour hole. Thus, increasing the divergence ratio from 1 to 2.45 had a significant effect on reducing the maximum depth and the topographic shape of the scour hole. According to the range mentioned in the literature for the Weber number, the scale effect was negligible for the chute with baffle blocks. Generally, it can be concluded that the sidewall changes also can make a reduction in the number of overbaffle blocks, causing a reduction in the construction cost.
Read full abstract