Abstract

Convection in a container, heated from below, cooled from above and rapidly rotated around a vertical axis, starts from its sidewall. When the imposed vertical temperature gradient is not sufficiently large for bulk modes to set in, thermal convection can start in the form of wall modes, which are observed near the sidewall as pairs of hot ascending and cold descending plumes that drift along the wall. With increasing temperature gradient, different wall and bulk modes occur and interact, leading finally to turbulence. A recent numerical study by Favier & Knobloch (J. Fluid Mech., 895, 2020, R1) reveals an extreme robustness of the wall states. They persist above the onset of bulk modes and turbulence, thereby relating them to the recently discovered boundary zonal flows in highly turbulent rotating thermal convection. More exciting is that the wall modes can be thought of as topologically protected states, as they are robust with respect to the sidewall shape. They stubbornly drift along the wall, following its contour, independent of geometric obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.