본 논문에서는 굴곡진 도로를 구간 선형 모델로 근사화한 차선 검출 알고리즘을 제안한다. 기존의 차선 검출 알고리즘들은 지표면이 평면이라는 가정을 이용하기 때문에, 도로면이 굴곡진 실제 도로에서는 강건한 차선 검출이 어렵다. 제안하는 방법에서는 이 문제를 전체 차로를 구간으로 분할하고, 각 구간 내에서 차로를 가장 잘 근사하는 평면 차로를 구함으로써 해결한다. 이를 위해 각 구간 내에서 다양한 각도와 위치를 가지는 평면 형태의 구간 차로 후보들을 생성하였다. 구간 차로 후보들의 연결 조합 중 실제 차로에 가장 가까운 조합을 다이나믹프로그래밍을 이용하여 찾음으로써 굴곡진 차로를 근사한다. 평면 도로 뿐 아니라, 상하, 좌우의 굴곡이 있는 도로 영상으로 구성된 데이터세트에 대하여 제안하는 방법의 차선 검출 성능을 검증하였다. 평면 도로를 가정한 기존의 방법들이 80%에서 90% 초반의 검출률을 보이는 반면, 제안하는 방법은 90% 후반의 검출률을 보임을 통해 굴곡진 도로에서의 차선 검출의 강건성을 입증하였다. This paper proposes a robust lane detection algorithm for non-flat roads by combining a piecewise linear model and dynamic programming. Compared with other lane models, the piecewise linear model can represent 3D shapes of roads from the scenes acquired by monocular camera since it can form a curved surface through a set of planar road. To represent the real road, the planar roads are created by various angles and positions at each section. And dynamic programming determines an optimal combination of planar roads based on lane properties. Experiment results demonstrate the robustness of proposed algorithm against non-flat road, curved road, and camera vibration.
Read full abstract