Abstract

Utilizing compact representations for continuous piecewise linear functions, this paper discusses some theoretical properties for nonseparable continuous piecewise linear programming. The existence of exact penalty for continuous piecewise linear programming is proved, which allows us to concentrate on unconstrained problems. For unconstrained problems, we give a sufficient and necessary local optimality condition, which is based on a model with universal representation capability and hence applicable to arbitrary continuous piecewise linear programming. From the gained optimality condition, an algorithm is proposed and evaluated by numerical experiments, where the theoretical properties are illustrated as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.