Abstract
Prospect theory postulates that the utility function is characterized by a kink (a point of non-differentiability) that distinguishes gains from losses. In this paper we present an algorithm that efficiently solves the linear version of the kinked-utility problem. First, we transform the non-differentiable kinked linear-utility problem into a higher dimensional, differentiable, linear program. Second, we introduce an efficient algorithm that solves the higher dimensional linear program in a smaller dimensional space. Third, we employ a numerical example to show that solving the problem with our algorithm is 15 times faster than solving the higher dimensional linear program using the interior point method of Mosek. Finally, we provide a direct link between the piece-wise linear programming problem and conditional value-at-risk, a downside risk measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.