Abstract
In this paper, we establish the equivalence between the half-space representation and the vertex representation of a smooth parametric semiclosed polyhedron. By virtue of the smooth representation result, we prove that the solution set of a smooth parametric piecewise linear program can be locally represented as a finite union of parametric semiclosed polyhedra generated by finite smooth functions. As consequences, we prove that the corresponding marginal function is differentiable and the solution map admits a differentiable selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.