In conjunction with the swift enhancement of China’s economic prowess, the demand for jewelry among the populace is gradually evolving towards personalized, customized, and intricate designs. Traditional manufacturing approaches are increasingly inadequate to meet these evolving demands. However, the advent of 3D printing technology presents a viable solution for the direct fabrication of such sophisticated jewelry. To this end, the conceptualization of personalized jewelry inspiration is initiated, followed by the implementation of parametric design using SolidWorks 2018 software. Subsequently, 3D printing technology is employed to materialize the jewelry directly. Results indicate that the “Guardian” jewelry model, crafted through the parametric modeling method, exhibits a commendable design, and adheres to processing requirements following a comprehensive risk analysis. The strategic adjustment of the jewelry’s position effectively reduces the required support, circumventing the necessity of adding support to critical surfaces. The surface of the Selective Laser Melting (SLM)-manufactured “Guardian” jewelry boasts a lustrous finish, showcasing optimal overlap between pillars and excellent connectivity among pores. Minimal powder adherence on the surface is observed, enabling direct utilization post-sandblasting, polishing, and plating. This establishes a solid foundation for the direct application of SLM-manufactured personalized jewelry.
Read full abstract