Abstract
The occurrence of Supraglacial Lakes (SGLs) may influence the signals acquired with microwave radiometers, which may result in a degree of uncertainty when employing microwave radiometer data for the detection of surface melt. Accurate monitoring of surface melting requires a reasonable assessment of this uncertainty. However, there is a scarcity of research in this field. Therefore, in this study, we computed surface melt in the vicinity of Automatic Weather Stations (AWSs) by employing Defense Meteorological Satellite Program (DMSP) Ka-band data and Soil Moisture and Ocean Salinity (SMOS) satellite L-band data and extracted SGL pixels by utilizing Sentinel-2 data. A comparison between surface melt results derived from AWS air temperature estimates and those obtained with remote sensing inversion in the two different bands was conducted for sites below the mean snowline elevation during the summers of 2016 to 2020. Compared with sites with no SGLs, the commission error (CO) of DMSP morning and evening data at sites where these water bodies were present increased by 36% and 30%, respectively, and the number of days with CO increased by 12 and 3 days, respectively. The omission error (OM) of SMOS morning and evening data increased by 33% and 32%, respectively, and the number of days with OM increased by 17 and 21 days, respectively. Identifying the source of error is a prerequisite for the improvement of surface melt algorithms, for which this study provides a basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.