This paper describes a procedure for efficiently simulating a multi asset Heston model with an arbitrary correlation structure. Very little literature can be found on the topic (e.g. Wadman (2010) and Dimitroff et al. (2011)), the latter being very restrictive on correlation assumptions. The scheme proposed in this text is based on Andersen's Quadratic Exponential (QE) scheme (2008) and operates with an arbitrary input correlation structure, which is partially decorrelated via a Gaussian copula approach to fit the single asset QE prerequisites. Given a long term horizon, it is shown numerically that, in the multi asset QE (MQE) scheme, all combinations of terminal correlations converge quickly to the true terminal correlations for decreasing Monte Carlo time step size, if the input correlation matrix is interpreted as the system's instantaneous correlation matrix. Convergence of vanilla and spread option prices is investigated, in order to verify the appropriate behaviour for higher moments of the marginal and the joint distribution under MQE. Finally, the superiority of MQE vs. Taylor based schemes is shown by comparing convergence of the empirical PDF, calculated with Monte Carlo, to the exact function calculated via Fourier inversion.