Abstract

We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Furthermore, the derived stiff conditions coincide with the classical non-stiff conditions. Secondly, we propose an abstract convergence analysis, where the linear part of the vector field is assumed to generate a group or a semigroup and the nonlinear part is assumed to be smooth and to satisfy a set of compatibility requirements. Concrete applications include nonlinear wave equations and diffusion-reaction processes. The convergence analysis also extends to the case where the nonlinear flows in the exponential splitting scheme are approximated by a sufficiently accurate one-step method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.