Abstract

Klein-Gordon equations on an unbounded domain are considered in one dimensional and two dimensional cases. Numerical computation is reduced to a finite domain by using the Hagstrom-Warburton (H-W) high-order absorbing boundary conditions (ABCs). Time integration is made by means of exponential splitting schemes that are efficient and easy to implement. In this way, it is possible to achieve a negligible error due to the time integration and to study the behavior of the absorption error. Numerical experiments displaying the accuracy of the numerical solution for the two dimensional case are provided. The influence of the dispersion coefficient on the error is also studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.