Abstract

We consider a finite element approximation of a general semi-linear stochastic partial differential equation (SPDE) driven by space-time multiplicative and additive noise. We examine the full weak convergence rate of the exponential Euler scheme when the linear operator is self adjoint and also provide the full weak convergence rate for non-self-adjoint linear operator with additive noise. Key part of the proof does not rely on Malliavin calculus. For non-self-adjoint operators, we analyse the optimal strong error for spatially semi-discrete approximations for both multiplicative and additive noise with truncated and non-truncated noise. Depending on the regularity of the noise and the initial solution, we found that in some cases the rate of weak convergence is twice the rate of the strong convergence. Our convergence rate is in agreement with some numerical results in two dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call