Abstract

The exponential propagation methods were applied in the past for accurate integration of the shallow water equations on the sphere. Despite obvious advantages related to the exact solution of the linear part of the system, their use for the solution of practical problems in geophysics has been limited because efficiency of the traditional algorithm for evaluating the exponential of Jacobian matrix is inadequate. In order to circumvent this limitation, we modify the existing scheme by using the Incomplete Orthogonalization Method instead of the Arnoldi iteration. We also propose a simple strategy to determine the initial size of the Krylov space using information from previous time instants. This strategy is ideally suited for the integration of fluid equations where the structure of the system Jacobian does not change rapidly between the subsequent time steps. A series of standard numerical tests performed with the shallow water model on a geodesic icosahedral grid shows that the new scheme achieves efficiency comparable to the semi-implicit methods. This fact, combined with the accuracy and the mass conservation of the exponential propagation scheme, makes the presented method a good candidate for solving many practical problems, including numerical weather prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.