OTOP1 belongs to the otopetrin family of membrane proteins that form proton channels in cells of diverse types. In mammals, OTOP1 is involved in sour transduction in taste cells and contributes to otoconia formation in the inner ear. From the structural point of view, otopetrins, including OTOP1, represent a quasi-tetramer consisting of four α-barrels. The exact transport pathways mediating proton flux through the OTOP1 channel and gating units modulating its activity are still a matter of debate. This review discusses current data on structural and functional features of OTOP1. Suggested proton transport pathways, regulatory mechanisms, and key amino acid residues determining functionality of the otopetrins are considered. The existing kinetic models of OTOP1 are discussed as well. Based on revealed functional properties, OTOP1 is suggested to operate as a logical XOR element that allows for proton flux only if transmembrane pH gradient exists.