Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O2 annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability. Not only does more crystalline indium oxide depict the high stability of threshold voltage in stringent high-temperature test environments and under positive bias, but it also shows much less degradation under forming gas annealing than as-deposited transistors. Furthermore, we also successfully solved the channel length-dependent threshold voltage problem, which is often observed in oxide transistors, by suppressing defects induced by the metal deposition process and metal doping.
Read full abstract