In recent years, Ge-based group-IV alloys (GeSn, SiGeSn) have received a significant amount of attention as candidates to replace Silicon for future low power and high performance nanoelectronics [1]. The interest in these materials stems primarily from the fact that, by varying the Sn-content of the alloy, it is possible to precisely tune its bandgap from indirect to direct [2], which even opens up the possibility to switch the carrier transport from larger mass low mobility L-valley electrons to the lower mass and high mobility Γ-valley electrons. Adding Si atoms into GeSn alloys enables additional strain engineering by decoupling the lattice constant from the band gap and enables the fabrication of devices to target specific applications. Ge exhibits superior hole mobility over Si and GeSn is predicted to further improve carrier mobilities for both electrons and holes, while still retaining Si CMOS compatibility [3]. In this , we present the fabrication and characterization of Ge- and GeSn-based vertical gate-all-around (GAA) nanowire (NW) p-MOSFETs. Multilayer stacks of Ge and GeSn were grown on a Ge virtual substrate (Ge-VS) using industrial CVD reactors and subsequently characterized, confirming the high quality of the alloys.On these GeSn/Ge heterostructures, vertical GAA nanowire FETs were fabricated using a top-down approach. First, nanowires were defined by electron-beam lithography and subsequently etched anisotropically using reactive ion etching (RIE). The diameter of the nanowires was reduced by digital etching, consisting of repeated combined GeOx layer formation by plasma oxidation and removal in diluted HF solution. This way nanowires with a diameter down to 20 nm and a height of 210 nm were fabricated. A two-step process was employed for gate dielectric formation to ensure a low interface trap density: (i), deposition of a thin layer of Al2O3, followed by an O2-plasma post-oxidation step; (ii) deposition of a HfO2 dielectric layer to reach the required EOT (equivalent oxide thickness). TiN deposited by sputtering forms the gate metal. Planarization and isotropic dry etching were performed to remove the TiN on the top of the nanowire. After a second planarization step, NiGe-contacts were formed on the exposed top nanowire by Ni-deposition followed by a forming-gas annealing step. Finally, metal contacts for gate and source/drain were added.The resulting Ge-NW-pMOSFETs exhibit high electrical performances. A low subthreshold slope (SS) of 66 mV/dec, a low drain-induced barrier lowering (DIBL) of 35 mV/V and an I on/I off-ratio of 2.1×106 were measured for nanowires with a diameter of 20 nm. For 65 nm NWs, the I on/I off-ratio improves, which is attributed to the decreased contact resistance on top of the NWs, leading to larger on-currents. The peak transconductance for the Ge NWs reached ~190 µS/µm (V DS=-0.5 V). Adopting a GeSn/Ge-heterostructure, with GeSn on top of the nanowire used as source the device performances are strongly enhanced. The on-current I on was increased by ~32%, mostly due to the reduced contact resistivity of the smaller bandgap of GeSn compared to Ge. It was also observed that adopting GeSn alloys leads to an increase in transconductance, G max, to a respectable value of ~870 µS/µm, almost 3 times larger as reported to date for Ge NWs. Moreover, both SS and DIBL are improved by decreasing the NW diameter as a consequence of improved electrostatic gate control over the channel.These results demonstrate that the incorporation of GeSn into Ge-MOSFET technology yields a significant advantage and confirm its high potential for low-power-high-performance nanoelectronics.Fig. 1: (a) Schematic of the GAA nanowire FET based on a GeSn/Ge-heterostructure. (b) Optical image on the metallic contacts (c) Transfer curve of a Ge nanowire pFET with a diameter of 20 nm. The SS is 68 mV/dec and the DIBL is 35 mV/V. (d) Transfer curves of Ge0.92Sn0.08/Ge nanowire pFETs with a diameter of 65 nm and different EOTs. Acknowledgments The authors acknowledge support from the German BMBF project “SiGeSn NanoFETs”.