Abstract In the pursuit of higher conversion efficiency, the PV industry has turned its focus towards perovskite-silicon tandem solar cells, which currently represent the peak of innovation. To surpass the efficiency limits of traditional single-junction cells, researchers are exploring the potential of these tandem solar cells by integrating the merits of perovskite and silicon. However, integrating these cells brings different challenges, such as deposition methods and material misalignments. Thus, in this work, we are using advanced simulation techniques, including Silvaco ATLAS’s Victory Process and Device Simulator to imitate the actual manufacturing processes. Primarily this research work focuses on three scenarios: shunting, planarization and conformal deposition to emulate the experimental conditions. The obtained results show the potential and effectiveness of process simulations in accurately predicting and improving the PV performance of the tandem solar cell. Two different perovskite-silicon tandem solar cells are designed using process simulations which showed a conversion efficiency of 27.51% and 29.08% respectively. This work highlights the importance of using simulation tools for the further development of tandem solar cell technology. Detailed process and device simulations reported in this work may pave the way in the fabrication of optimised perovskite/silicon tandem solar cell.
Read full abstract