Abstract

Vacuum-based or vapor-phase deposition is the most mature and widely used method for thin-film growth in the semiconductor industry. Yet, the vapor-phase growth of halide perovskites remains relatively underexplored compared to solution process deposition. The intrinsically largely distinct volatilities of organic and inorganic components in halide perovskites challenge the standard physical vapor deposition techniques. Thermal coevaporation tackles this with independent thermally controlled sources per precursor. Alternatively, pulsed laser deposition uses the energy of a laser to eject material from a target via thermal and nonthermal processes. This provides high versatility in the target composition, enabling the deposition of complex (including hybrid) thin films from a single-source target. This Perspective presents an overview of recent advances in laser-based deposition of halide perovskites, discusses advantages and challenges, and motivates the development of physical vapor deposition methods for hybrid materials, especially for applications requiring dry, conformal, and multilayer deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.