Abstract

The unique strain distribution on the surface of a Pd icosahedral nanocrystal is leveraged to control the sites for oxidation and reduction involved in the galvanic replacement reaction. Specifically, Pd is oxidized and dissolved from the center of each {111} facet due to its tensile strain, while the Pt(II) precursor adsorbs onto the vertices and edges featuring a compressive strain, followed by surface reduction and conformal deposition of the Pt atoms. Once the galvanic reaction is initiated, the {111} facets become more vulnerable to oxidation and dissolution, as the vertices and edges are protected by the deposited Pt atoms. The site-selected galvanic reaction naturally results in the formation of Pt icosahedral nanoframes covered by compressively strained {111} facets, which show enhanced catalytic activity and durability toward oxygen reduction relative to commercial Pt/C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.