Abstract

Micro-supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large-scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double-layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal-organic frameworks (MOFs). However, techniques for conformal deposition at micro- and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non-sacrificial anodic electrochemical deposition of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 - Ni3(HITP)2, a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni3(HITP)2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni3(HITP)2 nanotubes and Pt@ Ni3(HITP)2 core-shell nanowires. Based on the optimal electrodeposition protocols, Ni3(HITP)2 films interdigitated micro-supercapacitors are fabricated and tested as a proof of concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call