Many classical constructions, such as Plotkin’s and Turyn’s, were generalized by matrix product (MP) codes. Quasi-twisted (QT) codes, on the other hand, form an algebraically rich structure class that contains many codes with best-known parameters. We significantly extend the definition of MP codes to establish a broader class of generalized matrix product (GMP) codes that contains QT codes as well. We propose a generator matrix formula for any linear GMP code and provide a condition for determining the code size. We prove that any QT code has a GMP structure. Then we show how to build a generator polynomial matrix for a QT code from its GMP structure, and vice versa. Even though the class of QT codes contains many codes with best-known parameters, we present different examples of GMP codes with best-known parameters that are neither MP nor QT. Two different lower bounds on the minimum distance of GMP codes are presented; they generalize their counterparts in the MP codes literature. The second proposed lower bound replaces the non-singular by columns matrix with a less restrictive condition. Some examples are provided for comparing the two proposed bounds, as well as showing that these bounds are tight.
Read full abstract