Abstract

We introduce sequential and parallel decoders for quantum Tanner codes. When the Tanner code construction is applied to a sufficiently expanding square complex with robust local codes, we obtain a family of asymptotically good quantum low-density parity-check codes. In this case, our decoders provably correct arbitrary errors of weight linear in the code length, respectively in linear or logarithmic time. The same decoders are easily adapted to the expander lifted product codes of Panteleev and Kalachev. Along the way, we exploit recently established bounds on the robustness of random tensor codes to give a tighter bound on the minimum distance of quantum Tanner codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.