Abstract

Constructing quantum low-density parity-check (LDPC) codes with a minimum distance that grows faster than a square root of the length has been a major challenge of the field. With this challenge in mind, we investigate constructions that come from high-dimensional expanders, in particular Ramanujan complexes. These naturally give rise to very unbalanced quantum error correcting codes that have a large $X$-distance but a much smaller $Z$-distance. However, together with a classical expander LDPC code and a tensoring method that generalizes a construction of Hastings and also the Tillich--Zémor construction of quantum codes, we obtain quantum LDPC codes whose minimum distance exceeds the square root of the code length and whose dimension comes close to a square root of the code length. When the ingredient is a 2-dimensional Ramanujan complex, or the 2-skeleton of a 3-dimensional Ramanujan complex, we obtain a quantum LDPC code of minimum distance $n^{1/2}\log^{1/2}n$. We then exploit the expansion properties of the complex to devise the first polynomial-time algorithm that decodes above the square root barrier for quantum LDPC codes. Using a 3-dimensional Ramanujan complex, we also obtain an overall quantum code of minimum distance $n^{1/2}\log n$, which sets a new record for quantum LDPC codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.