Abstract
Many q-ary stabilizer quantum codes can be constructed from Hermitian self-orthogonal q^2-ary linear codes. This result can be generalized to q^{2 m}-ary linear codes, m > 1. We give a result for easily obtaining quantum codes from that generalization. As a consequence we provide several new binary stabilizer quantum codes which are records according to Grassl (Bounds on the minimum distance of linear codes, http://www.codetables.de, 2020) and new q-ary ones, with q ne 2, improving others in the literature.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have